

UCI projet

The Urban Cool Islands project, a case study crossing research and practice

IFU, 4th of July 2014

Biao WANG - Frédéric BONNEAUD - Marion BONHOMME - Luc ADOLPHE

Context – the urban heat island in theory

CITIES: CLIMATE CHANGE AGENTS

- Concentration of human activities: housing, trade, industry transport that require a great deal of energy.
- High GHGs emissions

CITIES: CLIMATE CHANGE VICTIMS

- Concentration of population,
- High interdependance of buildings, infrastructures, networks and services.
- Specific climate impacts.

Context – the urban heat island in theory

ARCHITECTURE, PLANNING AND CC.

"Cities present an appropriate scale".

Adaptation Reduce the vulnerability against actual or expected climate

change effects.

Mitigation

sinks

and enhance

Context – the urban heat island in theory

ARCHITECTURE AND PLANNING: 4 MEANS OF ACTION

to implement mitigation and adaptation measures

Urban form

Materials

Vegetation / Water

Heat release

Context – the urban heat island in practice

UHI IS POORLY KNOWN BY URBAN PLANNERS

3 mains reasons:

- 1. Urban microclimate is a rather new and complex discipline
- 2. Microclimate modelling tools, typically designed by research scientists, are not suited to the urban planner's needs.
- 3. Urban planner's experience and insight are rarely acknowledged.

However, it is asked to urban planners to act in emergency

П

Research's context

TOULOUSE CITY METROPOLITAN AREA

Case study: Montaudran neighbourhood

- The fourth French city by number of inhabitants
- A low density city (1 218 166 inhabitants and 5 000 km²)
- Temperate climate :
 - Average annual minimum temperature = 9,1°C
 - Average annual maximum temperature = 18,5°C

Research's context

MONTAUDRAN NEIGHBOURHOOD MONTAUDRAN le parc et les clairières sportives le bois Clément Ader Campus Rangueil la place centrale la maison de la formation

Objectives

OBJECTIVES

Hello Pro.fr

Portland Green Streets tour map, 2007.

Dubois C., 2011

- Development of knowledge suited for urban planners and architects in early design stages.
- Focus on the mitigation of UHI during summer.
- Design guidelines communication.
- Performance assessment of the measures implemented.

A TWOFOLD APPROACH

- 1. Evaluation of urban planners needs and constraints
- 2. Modelling of the site microclimate and identification of levers on urban cooling
- → Identification of core variables both usable by urban planners and scientifically relevant

CORE VARIABLES

In order to communicate with urban planners in future project, we developed a cart index summarising core variables and explaining their effect on urban microclimate.

14 cards:

Materials

- Wall cover
- Roof cover
- Ground cover
- Thermal insulation / inertia

Urban form

- Built-up density
- Prospect
- Plot area ratio

Vegetation / Water

- Ground cover
- Building vegetation
- Irrigation of vegetation
- Water

Heat release

- Energy behaviours of inhabitants
- Technology for cooling
- Solar panels

Conclusion

CONCLUSION

- Climate change is happening,
- City scale allows the implementation of both mitigation and adaptation measures,
- But the design guidelines must be understandable and usable by urban planners in order to be implemented in actual projects.

